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Abstract
In this paper, we give a construction of Dunkl monogenic and Dunkl harmonic
functions starting from holomorphic functions in the plane. This construction
has the advantage of not needing Dunkl’s intertwining operator or Dunkl
spherical harmonics. To this end we study Vekua-type systems and prove
a version of Fueter’s theorem in the case of finite reflection groups. Important
examples, such as a Dunkl monogenic Gaussian distribution or a Cauchy kernel,
will be given at the end.

PACS numbers: 02.30.Px, 02.30.Tb

1. Introduction

It is well known that there are many problems in physics which can be treated by methods
using harmonic or holomorphic functions. It is maybe not so well known that these methods
usually require that the problem itself shows symmetries under a rotation group SO(n). This
is due to the fact that the Laplace or Dirac operator is invariant under rotations. In fact, often
one is using the correspondence between monogenic functions, i.e. null solution of the Dirac
operator and irreducible representations of spin groups. But there are a lot of applications
where it would be advantageous to have methods which are based on symmetries given by
reflection groups, particularly finite reflection groups, instead of rotation groups. However,
there exists one major obstacle. While partial derivatives are closely linked to rotations this
is not the case for reflections. The way out seems to be to consider differential-difference
operators [7, 9], also called Dunkl operators in the literature. Due to their connection with
Coxeter groups these operators are used in many fields of mathematics and physics. They
provide a useful tool in the study of special functions with root systems [5, 8, 12]. Moreover,
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the commutative algebra generated by these operators has been used in the study of certain
exactly solvable models of quantum mechanics, namely the Calogero–Moser–Sutherland
models, which describe quantum mechanical system of N identical particles on a circle or line
which interact pairwise through the long-range potentials of inverse square type [6, 13, 14,
16, 24]. Furthermore, since finite reflection groups or Coxeter groups correspond to so-called
point groups in crystallography, which describe the symmetries of a crystal, also in this field
the application of operators linked to such groups instead of methods using classic harmonic
function theory is required. This is the main reason for the importance of Dunkl operators in
the study of the crystallographic Radon and x-ray transforms.

One of the most important properties of Dunkl operators is that they are mutually commute.
This allowed the authors in [1, 3, 17] to introduce a Dirac operator, called the Dunkl–Dirac
operator, based on differential-difference operators which are invariant under reflection groups
and also factorize the Dunkl–Laplacian (see section 2 for details). However, the construction
of specific Dunkl monogenic functions is a very difficult task. The main reason is that the two
major tools used in the literature, the Dunkl intertwining operator and the classes of spherical
harmonics associated with root systems are not really adequate for the explicit construction
of Dunkl monogenic or Dunkl harmonic functions. While Dunkl’s intertwining operator Vκ

provides a link with classical partial derivatives, i.e. TiVκ = Vκ∂i , it is explicitly known only
in some special cases. The application of spherical Dunkl harmonics needs the knowledge
of the invariant measure and the special orthogonal polynomials related to it. Additionally, it
only results in approximation by power series. It would be much better if one has a method
which only requires the explicit knowledge of the involved operators alone to construct Dunkl
monogenic functions. But, such a tool exists in classical hypercomplex function theory, in the
form of the so-called Fueter’s theorem.

To explain the idea we take a look into the classical case. If f (z) is a holomorphic function
in an open set B in the upper half complex plane and

f (z) = u(s, t) + iv(s, t), z = s + it,

then Fueter’s theorem [10, 21, 25] asserts that in the set �B = {
x = x0 +x ∈ R

d
1 : (x0, |x|) ∈ B

}
there holds

∂x�
(d−1)/2
x

(
u(x0, |x|) +

x

|x|v(x0, |x|)
)

= 0,

where ∂x and �x denotes the classical generalized Cauchy–Riemann operator and Laplace
operator, respectively. In other words, one only needs to apply the Laplacian often enough to
a given holomorphic function to obtain a monogenic one.

This theme was further developed and found to play a crucial role in the study of Fourier
multipliers and singular integrals on the unit sphere of R

d
1 and its Lipschitz perturbations

[22, 23]. As examples, their study shows that by means of Fueter’s machinery, some problems
on the unit sphere may be reduced to the corresponding ones on the unit circle in the complex
plane.

For simplicity, we will denote for x ∈ �B,

�f (x0 + x) = u(x0, |x|) +
x

|x|v(x0, |x|).

�B is said to be the induced set from B and �f (x0 + x) the induced function from f .
In a recent work, Kou, Peña–Peña, Qian and Sommen [15, 18, 26] proved the following

generalization of Fueter’s theorem: if Pn(x) is a left monogenic, homogeneous function of
degree n in R

d , i.e. ∂xPn(x) = 0, then

∂x

(
�n+(d−1)/2

x ( �f (x0 + x)Pn(x))
) = 0,

2
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whenever n + (d − 1)/2 is a non-negative integer. If the space dimension d + 1 is odd, then
the above result also holds for n being the non-negative integer but in this case Pn(x) needs to
be a homogeneous left monogenic polynomial of degree n.

When n = 0, this reduces to the standard Fueter’s theorem. We would like to remark that
some other generalizations of Fueter’s theorem have been studied in [18, 19, 20].

Since this theorem provides a method to construct the higher dimensional monogenic
functions or harmonic functions explicitly, we would like to use it in the case of finite reflection
groups. To this end, we will prove a version of Fueter’s theorem for Dunkl monogenic
functions, as given in the following theorem.

Theorem 1.1. Let W be a finite reflection group which leaves x0-axis invariant and f be a
holomorphic function in an open set B in the upper half complex plane given by

f = u(s, t) + iv(s, t), z = s + it.

Then in the induced set �B the function

�
γκ + d−1

2
h

�f (x0 + x)

is Dunkl monogenic whenever γκ + (d − 1)/2 is a positive integer. Hereby �h denotes the
Dunkl–Laplacian.

Furthermore, we also give a generalization of the above theorem as follows:

Theorem 1.2. If, in addition to the assumptions in theorem 1.1, we assume that Pn(x) is
a homogeneous Dunkl monogenic function of degree n in R

d , where n is any non-negative
integer. Then in the induced set �B the function

�
γκ +n+(d−1)/2
h ( �f (x0 + x)Pn(x))

is Dunkl monogenic whenever γκ + n + (d − 1)/2 is a positive integer.

The applicability of the method constructed in the present paper is restricted to
γκ +n+ (d −1)/2 being positive integers. That is because in the classical case the applications
of Fueter’s theorem reduces to the pointwise differentiation. On the other hand, for more
general cases where γκ is any positive real number, Fueter’s theorem will require Fourier
multiplier operators. Since we are more interested in the calculation of explicit examples, this
case will not be considered here.

The paper is organized as follows. In the next section we collect some basic facts about
Clifford algebra and Dunkl operators. The spherical decomposition of Dunkl–Dirac operators
will be studied in section 3. Section 4 is devoted to the proofs of our main theorems. In
section 5 we will present some examples of Dunkl monogenic functions. Among them is
the important example of a Dunkl monogenic Gaussian, i.e. Green’s function of the diffusion
equation in the Dunkl monogenic case or the monogenic wave function of ground state of the
quantum harmonic oscillator in the Dunkl case.

2. Preliminaries

We denote by R0,d the real Clifford algebra constructed over the orthonormal basis (e1, . . . , ed)

of the Euclidean space R
d . The basic axiom of this associative but non-commutative algebra

is that the product of a vector with itself equals its squared length up to a minus sign, i.e. for
any vector x = ∑d

i=0 xiei in R
d , we have that

x2 = −|x|2 = −
d∑

i=1

x2
i .

3
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It thus follows that the elements of the basis submit to the multiplication rules

e2
i = −1, i = 1, . . . , d,

eiej + ej ei = 0, 1 � i �= j � d.

A basis for the algebra is then given by the elements

eA = ei1 . . . eid ,

where A = {i1, . . . , id} ⊂ {1, . . . , d} is such that 1 � i1 < · · · < id � d. For the empty set ∅,
we put e∅ = e0 = 1, the latter being the identity. It follows that the dimension of R0,d is 2d .
Hence, each element a ∈ R0,d will be represented by

a =
∑
A

aAeA, aA ∈ R.

An important subspace of the real Clifford algebra R0,d is the so-called space of paravectors
R

d
1 = R

⊕
R

d , being sums of scalars and vectors.
In what follows, sc[x] = x0 will denote the scalar part of x ∈ R0,d , while an element

x = (x0, x1, . . . , xd) of R
d
1 will be identified with x = x0 + x, x = ∑d

i=1 xiei . Also, we need
the anti-involution ¯̇defined by ē0 = e0, ēi = −ei and eiej = ēj ēi . An important property of
algebra R0,d is that each non-zero vector x in R

d (or in R
d
1 ) has a multiplicative inverse given

by x̄
‖x‖2 .

An R0,d -valued function f over � ⊂ R
d
1 has a representation

f =
∑
A

eAfA,

with component fA : � → R.
The reflection σαx of a given vector x ∈ R

d
1 on the hyperplane orthogonal to α �= 0 is

given, in Clifford notation, by

σαx := αxα−1.

We remark that it corresponds (up to a factor of −1) to the standard notation of a reflection
given by

σαx := x − 2
〈α, x〉
|α|2 α.

A finite set R ⊂ R
d
1

∖{0} is called a root system if R
⋂

R
d
1 · α = {α,−α} and σαR = R

for all α ∈ R. For a given root system R the reflections σα, α ∈ R, generate a finite group
W ⊂ O(d), called the finite reflection group (or Coxeter group) associated with R. All
reflections in W correspond to the suitable pairs of roots. For a given β ∈ R

d\⋃
α∈R Hα , we

fix the positive subsystem R+ = {α ∈ R|〈α, β〉 > 0}, i.e. for each α ∈ R either α ∈ R+ or
−α ∈ R+.

Sometimes we will only consider reflections which only act in R
d . In this case we denote

α or β by α or β.
A function κ : R → C on a root system R is called a multiplicity function if it is invariant

under the action of the associated reflection group W . If one regards κ as a function on the
corresponding reflections, this means that κ is constant on the conjugacy classes of reflections
in W . For abbreviation, we introduce the index γκ = ∑

α∈R+
κ(α).

For each fixed positive subsystem R+ and multiplicity function κ we have, as invariant
operators, the differential-difference operators (also called Dunkl operators)

Tif (x) = ∂

∂xi

f (x) +
∑
α∈R+

κ(α)
f (x) − f (σαx)

〈α, x〉 αi, i = 0, 1, . . . , d, (1)

4
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for f ∈ C1
(
R

d
1

)
. In the case κ = 0, Ti, i = 0, 1, . . . , d, reduce to the corresponding partial

derivatives. This also give us the justification to think of these differential-difference operators
as the equivalent of partial derivatives in the case of finite reflection groups. In this paper, we
will assume throughout that κ � 0 and γκ > 0. More importantly, these operators mutually
commute; that is, TiTj = TjTi . This property allows us to define a Dunkl–Dirac operator in
R

d for the corresponding reflection group W given by

Dhf =
d∑

i=1

eiTif. (2)

The Dunkl–Laplacian �h in R
d associated with the finite reflection group W and the

multiplicity function κ is defined by

�hf = −D2
hf =

d∑
i=1

T 2
i f

= �xf + 2
∑
α∈R+

κ(α)
〈α,∇xf (x)〉

〈α, x〉 − 2
∑
α∈R+

κ(α)
f (x) − f (σαx)

〈α, x〉2
(3)

for any f ∈ C2(Rd), where �x and ∇x are usual Laplacian and gradient operators in R
d ,

respectively.
We now introduce the Dunkl–Cauchy–Riemann operator in R

d
1 :

Dh = T0 + Dh,

and Dunkl–Laplacian in R
d
1 :

�h = T 2
0 + �h.

In this paper, we will assume that our group W will leave the x0-axis invariant. Since in this
case we have T0 = ∂x0 , the Dunkl–Cauchy–Riemann operator and Dunkl–Laplacian in R

d
1 can

also be written by

Dh = ∂x0 + Dh, (4)

and

�h = ∂2
x0

+ �h. (5)

Functions belonging to the kernel of the Dunkl–Dirac operator Dh or the Dunkl–Cauchy–
Riemann operator Dh will be called Dunkl monogenic functions. As usual, functions belonging
to be the kernel of Dunkl–Laplacian will be called Dunkl harmonic functions.

3. Spherical decomposition of the Dunkl–Dirac operator and Vekua-type systems

The classical Fueter’s theorem and its generalizations obtained in [15, 18, 25] provide us with
Dunkl monogenic functions of the form

A(x0, r) + ωB(x0, r), (6)

whereby x ∈ R
d , r = |x|, x = rω and A and B are scalar-valued functions. This means that

Dh(A(x0, r) + ωB(x0, r)) = 0, (7)

where Dh = ∂x0 + Dh.
To study this system we need the representation of our Dunkl–Dirac operator in terms of

spherical coordinates which is given in the next theorem.

5
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Theorem 3.1. In spherical coordinates the Dunkl–Dirac operator has the form

Dh = ω

(
∂r +

1

r
�ω

)
, (8)

with

�ω = γκ + �ω + 
,

where

�ω = −
∑
i<j

eiej

(
xi∂xj

− xj∂xi

)
,

and


f (x) = −
∑
i<j

eiej

∑
α∈R+

κ(α)
f (x) − f (σαx)

〈α, x〉 (xiαj − xjαi) −
∑
α∈R+

κ(α)f (σαx),

for any f ∈ C1(Rd).

Remark 3.1. While the operator �ω in the above theorem corresponds to the classical
spherical vector derivatives (the classic Gamma operator), the additional operator 
 and
constant γκ derive from the difference part.

In order to prove this theorem instead of trying to work with a direct calculation in terms
of coordinate functions we will employ a standard technique in higher dimensions whereby
we study the commutator and anti-commutator between x and Dh.

If we define the commutator and anti-commutator for two linear operators X and Y as
follows:

[X, Y ] = XY − YX, {X, Y } = XY + YX,

then we get the following properties:

Lemma 3.1.

{x,Dh} = −2

(
Ex +

d

2
+ γκ

)
, (9)

and

[x,Dh] = −2

(
�ω − d

2
+ 


)
, (10)

whereby Ex is the classical Euler operator and �ω and 
 are the operators defined in the
previous theorem.

Proof. For the first relation, we have

xDh + Dhx =
∑
i �=j

eiej (xiTj − Tjxi) −
d∑

i=1

(xiTi + Tixi). (11)

First we shall verify that the term
∑

i �=j eiej (xiTj − Tjxi) vanishes. To this end, for all
f ∈ C1(Rd),

xiTjf − Tj (xif ) = xi

⎛
⎝∑

α∈R+

κ(α)
f (x)− f (σαx)

〈α, x〉 αj

⎞
⎠−

∑
α∈R+

κ(α)
xif (x)− (σαx)if (σαx)

〈α, x〉 αj

= −2
∑
α∈R+

κ(α)
αiαjf (σαx)

|α|2 ,

6
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which is an expression obviously symmetric in i and j , so that summing over the product of
the basis elements gives zero. For the second sum on the right-hand side of (11) we obtain

d∑
i=1

(xiTif + Ti(xif ))

= 2
d∑

i=1

xi∂xi
f (x) + df (x) +

d∑
i=1

∑
α∈R+

κ(α)xi

⎛
⎝∑

α∈R+

κ(α)
f (x) − f (σαx)

〈α, x〉 αi

⎞
⎠

+
d∑

i=1

∑
α∈R+

κ(α)
xif (x) − (σαx)if (σαx)

〈α, x〉 αi

= 2Exf (x) + df (x) + 2f (x)
∑
α∈R+

κ(α)

= 2

(
Ex +

d

2
+ γκ

)
f (x).

This proves the first relation.
For the second relation, since we have

xDh − Dhx =
∑
i �=j

eiej (xiTj + Tjxi) −
d∑

i=1

(xiTi − Tixi), (12)

similar calculations as for the first relation yield for all f ∈ C1(Rd)

[x,Dh]f (x) = df (x) + 2
∑
i<j

eiej (xi∂xj
f (x) − xj∂xi

f (x))

+ 2
∑
i<j

eiej

∑
α∈R+

κ(α)
f (x) − f (σαx)

〈α, x〉 (xiαj − xjαi) + 2
∑
α∈R+

κ(α)f (σαx)

= −2

(
�ωf (x) − d

2
f (x) + 
f (x)

)

= −2

(
�ω − d

2
+ 


)
f (x).

This completes the proof. �

Remark 3.2. The first relation in lemma 3.1 can also be found in [17].

Now we are able to give a proof for theorem 3.1.

Proof of theorem 3.1. From lemma 3.1, if we consider the sum of (9) and (10), for any
f ∈ C1(Rd), we get

2xDhf (x) = −2Exf (x) − 2γκf (x) − 2�ωf (x) − 2
f (x),

i.e.

Dh = − x̄

|x|2 (Ex + γκ + �ω + 
)

= ω

(
∂r +

1

r
(γκ + �ω + 
)

)

= ω

(
∂r +

1

r
�ω

)
. (13)

This ends the proof. �

7
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Furthermore, we have

Lemma 3.2. For any radial function f (x) = f (|x|) = f (r) and ω = x

|x| , we have

(i) 
f (r) = −γκf (r),

(ii) 
(ωf (r)) = 
(ω)f (r),

(iii) 
(ω) = γκω.

Proof. The results (i) and (ii) can be easily proved since radial functions are invariant under
reflections.

The key result is the last one. By straightforward, but careful calculations, we obtain

Dhω = −d − 1

r
− 2γκ

r
.

In addition, it is well known that the operator �ω has the following property:

�ω(ω) = (d − 1)ω.

So, invoking relation (13), we get


(ω) = γκω,

and the lemma follows. �

Summarily, we have for the Gamma operator in the Dunkl case:

Theorem 3.2. For any radial function f (x) = f (|x|) = f (r) and ω = x

|x| , it holds

(i) �ωf (r) = 0, (14)

(ii) �ω(ωf (r)) = �ω(ω)f (r), (15)

(iii) �ω(ω) = (2γκ + d − 1)ω. (16)

Using the obtained properties in theorems 3.1 and 3.2 we find that the assumed Dunkl
monogenicity of (6) requires that our functions A and B satisfy the following Vekua-type
system: {

∂x0A − ∂rB = 2γκ +d−1
r

B,

∂x0B + ∂rA = 0.
(17)

For a more general approach, one may consider Dunkl monogenic functions of the form

(A(x0, r) + ωB(x0, r))Pn(x), (18)

whereby

Pn(x) = rnPn(ω),

is Dunkl monogenic in R
d , i.e. DhPn(x) = 0, and homogeneous of degree n ∈ Z+, Z+ =

N ∪ {0}.
In order to get the corresponding Vekua-type system for function of type (18), we need

the following theorem:

Theorem 3.3. If Pn(x) is a homogeneous Dunkl monogenic function of degree n in R
d , then

we have

�ωPn(ω) = −nPn(ω), (19)

8
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and

�ω(ωPn(ω)) = (2γκ + n + d − 1)(ωPn(ω)). (20)

The classical idea to prove the above theorem consists in the the following result.
If f (x) is any monogenic function in an open ball B(c) ⊂ R

d centred at the origin with
radius c, then its Kelvin inversion

If (x) ≡ G(x)f

(
x̄

|x|2
)

is monogenic in R
d\B̄(1/c), where G(x) = x̄

|x|d denotes the Cauchy kernel.
But this idea does not work for the proof of the above theorem since at present we do not

have a similar result about Kelvin inversion in the Dunkl case. Therefore, we are going to
consider a different approach.

Proof. In view of our representation of the Dunkl–Dirac operator in spherical coordinates
the property Dh(r

nPn(ω)) = 0 implies (19) easily. To prove (20), we can apply the anti-
commutator {x,Dh} on the term x

|x|2 Pn(x), i.e. using (9) we get

{x,Dh}
x

|x|2 Pn(x) = −2

(
Ex +

d

2
+ γκ

)
x

|x|2 Pn(x). (21)

On the one hand, the left-hand side of the above equality yields

{x,Dh}
x

|x|2 Pn(x) = (xDh + Dhx)
x

|x|2 Pn(x)

= rω

(
ω

(
∂r +

1

r
�ω

))
(rn−1ωPn(ω)) − DhPn(x)

= −((n − 1)rn−1ωPn(ω) + rn−1�ω(ωPn(ω))),

since DhPn(x) = 0.
On the other hand, the right-hand side of equality (21) gives

−2

(
Ex +

d

2
+ γκ

)
x

|x|2 Pn(x) = −2

(
r∂r +

d

2
+ γκ

)
(rn−1ωPn(ω))

= −2

(
(n − 1)rn−1ωPn(ω) +

d

2
rn−1ωPn(ω) + γκr

n−1ωPn(ω)

)
.

Summarily, one has

�ω(ωPn(ω)) = (2γκ + n + d − 1)(ωPn(ω)),

which is exactly relation (20). �

While we stated before that we do not have the corresponding result for the Kelvin inverse
in the Dunkl case, we are now able to obtain such a result, but only for homogeneous functions.
By (20), we can easily prove the following result:

Corollary 3.1. If f (x) is a homogeneous Dunkl monogenic function in an open ball
B(c) ⊂ R

d centred at the origin with radius c, then its corresponding Kelvin inversion

Ihf (x) ≡ Gh(x)f

(
x̄

|x|2
)

is Dunkl monogenic in R
d\B̄(1/c), where Gh(x) = x̄

|x|2γκ +d is the Cauchy kernel in Dunkl–
Clifford analysis.

9
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We want to emphasize that we do not have a direct proof for the above statement, only as
a consequence of theorem 3.3.

Based on theorems 3.1 and 3.3, we get that the Dunkl monogenicity of (18) requires that
the functions A and B satisfy the Vekua-type system{

∂x0A − ∂rB = 2γκ +2n+d−1
r

B,

∂x0B + ∂rA = 0.
(22)

4. Proof of the main theorems

With the work of the previous section we are now able to provide a proof of theorems 1.1 and
1.2. Since the proof will be given in a constructive way, it will allow us to compute some
examples in the next section. Additionally, since theorem 1.1 is a special case (n = 0) of
theorem 1.2, we will only prove theorem 1.2.

Now let us outline our proof. First, we would like to remark that this version of Fueter’s
theorem provides us with axial monogenic functions of degree n, i.e.

�
γκ +n+(d−1)/2
h (u(x0, |x|) + ωv(x0, |x|)Pn(x)) = (A(x0, r) + ωB(x0, r))Pn(x)

for some scalar-valued and continuously differentiable functions A and B. Hence, the proof
consists in showing that A and B satisfy our Vekua-type system (22). To this end, we start
with the following lemma from [18–20] which we only state the special case that we will use
in this paper.

Lemma 4.1. Suppose that f (x0, r) and g(x0, r) are scalar-valued infinitely differentiable
functions in R

2 and that Dr and Dr are differential operators defined by Dr(0){f } =
Dr(0){f } = f and

Dr(m){f } =
(

1

r
∂r

)m

{f },

Dr(m){f } = ∂r

(
Dr(m − 1){f }

r

)
for m � 1. Then one has

(i) ∂2
r Dr(m){f } = Dr(m){∂2

r f } − 2mDr(m + 1){f },
(ii) ∂rDr(m − 1){f/r} = Dr(m){f },
(iii) Dr(m){∂rf } = ∂rDr(m){f },
(iv) Dr(m){∂rf } − ∂rD

r(m){f } = 2m/rDr(m){f },
(v) ∂2

r Dr(m){f } = Dr(m)
{
∂2
r f

} − 2mDr(m + 1){f },

(vi) Dr(m){fg} =
m∑

j=0

(
m

j

)
Dr(m − j){f }Dr(j){g},

(vii) Dr(m){fg} =
m∑

j=0

(
m

j

)
Dr(m − j){f }Dr(j){g}.

Furthermore, we need the following lemma which shows that the iterated Dunkl–Laplacian
�m

h , for any positive integer m, keeps functions of the form (A(x0, r) + ωB(x0, r))Pn(x)

invariant whenever A and B are scalar-valued harmonic functions in R
2.

10
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Lemma 4.2. Let h(x0, r) be a scalar-valued harmonic function in R
2, i.e.

∂2
x0

h + ∂2
r h = 0, (23)

and Pn(x) be a homogeneous Dunkl monogenic function of degree n in R
d . Then we have

�m
h (h(x0, r)Pn(x)) =

m∏
i=1

(2γκ + 2n + d − (2i − 1))Dr(m){h(x0, r)}Pn(x)

and

�m
h (h(x0, r)ωPn(x)) =

m∏
i=1

(2γκ + 2n + d − (2i − 1))Dr(m){h(x0, r)}ωPn(x),

with m being a positive integer.

Proof. We will prove this lemma by induction. When m = 1, we need to show that the
following identities hold:

�h(hPn) = (2γκ + 2n + d − 1)Dr(1){h}Pn (24)

and

�h(hωPn) = (2γκ + 2n + d − 1)Dr(1){h}ωPn. (25)

To prove (24), we start from

�h = ∂2
x0

− DhDh, Dh = ω

(
∂r +

1

r
�ω

)
.

Then using (19) and (20) in theorem 3.3 we get

Dh(hPn) = ω

(
∂r +

1

r
�ω

)
(hrnPn(ω))

= (∂rh)rnωPn(ω)

and

DhDh(hPn) = ω

(
∂r +

1

r
�ω

)
((∂rh)rnωPn(ω))

= −(
∂2
r h

)
rnPn(ω) − n(∂rh)rn−1Pn(ω)

− (2γκ + d + n − 1)(∂rh)rn−1Pn(ω)

= −
(

∂2
r h +

2γκ + 2n + d − 1

r
(∂rh)

)
rnPn(ω).

Therefore, we have

�h(hPn) =
(

∂2
x0

h + ∂2
r h +

2γκ + 2n + d − 1

r
(∂rh)

)
rnPn(ω)

= (2γκ + 2n + d − 1)Dr(1){h}Pn.

To prove (25), again applying (19) and (20) from theorem 3.3 we obtain

Dh(hωPn) = ω

(
∂r +

1

r
�ω

)
(hrnωPn(ω))

= ω((∂rh)rnωPn(ω) + nhrn−1ωPn(ω) + hrn−1�ω(ωPn(ω)))

= −(∂rh)rnPn(ω) − (2γκ + 2n + d − 1)hrn−1Pn(ω)

11
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and

DhDh(hωPn) = −ω

(
∂r +

1

r
�ω

)
((∂rh)rnPn(ω) + (2γκ + 2n + d − 1)hrn−1Pn(ω))

= −ω
(((

∂2
r h

)
rn + n(∂rh)rn−1

)
Pn(ω) + (∂rh)rn−1�ω(Pn(ω)

)
+ (2γκ + 2n + d − 1)((∂rh)rn−1 + (n − 1)hrn−2)Pn(ω)

+ (2γκ + 2n + d − 1)hrn−2�ω(Pn(ω)))

= −
(

∂2
r h +

n

r
(∂rh) − n

r
(∂rh) +

2γκ + 2n + d − 1

r
(∂rh)

+
(2γκ + 2n + d − 1)(n − 1)

r2
h − (2γκ + 2n + d − 1)n

r2
h

)
ωrnPn(ω)

= −
(

∂2
r h + (2γκ + 2n + d − 1)

(
∂rh

r
− h

r2

))
ωPn.

This leads to

�h(hωPn) =
(

∂2
x0

h + ∂2
r h + (2γκ + 2n + d − 1)

(
∂rh

r
− h

r2

))
ωPn

= (2γκ + 2n + d − 1)Dr(1){h}ωPn.

Summarizing we have that the lemma is true in the case m = 1. Assume that our formulae
hold for a positive integer m, we have to show them for m + 1.

We thus get

�m+1
h (hPn) =

m∏
i=1

(2γκ + 2n + d − (2i − 1))�hDr(m){h}Pn,

=
m∏

i=1

(2γκ + 2n + d − (2i − 1))

· (
∂2
x0

Dr(m){h} + ∂2
r Dr(m){h} + (2γκ + 2n + d − 1)Dr(m + 1){h})Pn

=
m∏

i=1

(2γκ + 2n + d − (2i − 1))

· (
Dr(m)

{
∂2
x0

h + ∂2
r h

}
+ (2γκ + 2n + d − (2m + 1))Dr(m + 1){h})Pn

=
m+1∏
i=1

(2γκ + 2n + d − (2i − 1))Dr(m + 1){h}Pn,

which establishes the first formula. The other one may be proved in a similar way. �

We are now ready to present our proof of theorem 1.2.

Proof. By lemma 4.2, we get that

�
γκ +n+(d−1)/2
h

(
(u(x0, |x|) +

x

|x|v(x0, |x|))Pn(x)

)
= (2γκ + 2n + d − 1)!!(A(x0, r) + ωB(x0, r))Pn(x),

with

A = Dr

(
γκ + n +

d − 1

2

)
{u},

B = Dr

(
γκ + n +

d − 1

2

)
{v}.

12
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The task is now to show that A and B satisfy the Vekua-type system (22). In order to do
that, it will be necessary to use the assumptions on u and v and statements (iii) and (iv) of
lemma 4.1.

Indeed, we obtain

∂x0A − ∂rB = Dr

(
γκ + n +

d − 1

2

)
{∂x0u} − ∂rD

r

(
γκ + n +

d − 1

2

)
{v}

= Dr

(
γκ + n +

d − 1

2

)
{∂rv} − ∂rD

r

(
γκ + n +

d − 1

2

)
{v}

= 2γκ + 2n + d − 1

r
Dr

(
γκ + n +

d − 1

2

)
{v}

= 2γκ + 2n + d − 1

r
B

and

∂x0B + ∂rA = Dr

(
γκ + n +

d − 1

2

)
{∂x0v} − ∂rDr

(
γκ + n +

d − 1

2

)
{u}

= Dr

(
γκ + n +

d − 1

2

)
{∂x0v} + Dr

(
γκ + n +

d − 1

2

)
{∂ru}

= Dr

(
γκ + n +

d − 1

2

)
{∂x0v + ∂ru}

= 0,

which completes the proof.
�

5. Examples of Dunkl monogenic functions

In this section, we will give some examples of Dunkl monogenic functions by using our main
theorems. As it was stated, to construct our function we just need to choose a holomorphic
function f (z). To simplify our work instead of directly applying our theorem we will use the
method of our proof.

Example 5.1. Let f (z) = iz. It easily follows that

Dr(m){−r} = (−1)m
(2m − 3)!!

r2m−1
,

and

Dr(m){x0} = (−1)m
(2m − 1)!!

r2m
x0.

We thus get the Dunkl monogenic function(
1

r2γκ +2n+d−2
+

(2γκ + 2n + d − 2)

r2γκ +2n+d
x0x

)
Pn(x).

Example 5.2. Consider f (z) = 1/z. It is easy to check that

Dr(m)

{
x0

x2
0 + r2

}
= (−1)m

2mm!x0(
x2

0 + r2
)m+1 ,

13
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and

Dr(m)

{
r

x2
0 + r2

}
= (−1)m

2mm!r(
x2

0 + r2
)m+1 .

With this choice of initial function, we obtain the Dunkl monogenic function(
x̄

|x|2γκ +2n+d+1

)
Pn(x).

We would like to remark that for n = 0 the above Dunkl monogenic function is just the
Cauchy kernel for the Dunkl–Dirac operator.

For the last example, we will construct a Dunkl monogenic version of the Gaussian
distribution. To this end it is enough to consider the complex Gaussian, f (z) = exp(z2/2).
Our construction method will yield an n-dimensional function with the desired properties.

Example 5.3. Choose f (z) = exp(z2/2), we use the fact that

Dr(m)

{
exp

(
x2

0 − r2

2

)}
= (−1)m exp

(
x2

0 − r2

2

)
.

This leads to

Dr(m){cos(x0r)} =
m∑

j=1

a
(m)
j

x
j

0

r2m−j
cos(x0r + jπ/2),

and

Dr(m){sin(x0r)} =
m∑

j=1

a
(m+1)
j+1

x
j

0

r2m−j
sin(x0r + jπ/2),

where

a
(m)
1 = (−1)m+1(2m − 3)!!,

a
(m+1)
j = −(2m − j)a

(m)
j + a

(m)
j−1, j = 2, . . . , m,

a(m)
m = 1.

By statements (vi) and (vii) of lemma 4.2, we see that

Dr(m)

{
exp

(
x2

0 − r2

2

)
cos(x0r)

}
= exp

(
x2

0 − r2

2

) m∑
j=0

(
m

j

)
(−1)m−jDr(j){cos(x0r)},

and

Dr(m)

{
exp

(
x2

0 − r2

2

)
sin(x0r)

}
= exp

(
x2

0 − r2

2

) m∑
j=0

(
m

j

)
(−1)m−jDr(j){sin(x0r)}.

Hence, we have that

exp

(
x2

0 − r2

2

)⎛
⎝γκ +n+ d−1

2∑
j=0

(
γκ + n + d−1

2
j

)
(−1)γκ +n+ d−1

2 −jDr(j){cos(x0r)}

+ ω

γκ +n+ d−1
2∑

j=0

(
γκ + n + d−1

2
j

)
(−1)γκ +n+ d−1

2 −jDr(j){sin(x0r)}
⎞
⎠Pn(x)

is a Dunkl monogenic function, which is the equivalent of the Gauss distribution in classical
hypercomplex function theory analysis.

Note that if γκ = 0, which implies κ = 0, i.e. the classical case of partial derivatives, all
the above examples are reduced to the classical cases [18].
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[4] Delanghe R, Sommen F and Souček V 1992 Clifford algebra and spinor valued functions A Function Theory
for Dirac Operator (Dordrecht: Kluwer)

[5] van Diejen J F 1997 Confluent hypergeometric orthogonal polynomials repated to the rational quantum Calogero
system with harmonic confinement Commun. Math. Phys. 188 467–97

[6] van Diejen J F and Vinet L 2000 Calogero–Moser–Sutherland models CRM Series in Mathematical Physics
(New York: Springer)

[7] Dunkl C F 1989 Differential-difference operators associated to reflection groups Trans. Am. Math. Soc.
311 167–83

[8] Dunkl C F 1991 Integral kernels with reflection group invariance Can. J. Math. 43 1213–27
[9] Dunkl C F and Xu Y 2001 Orthogonal Polynomials of Several Variables (Cambridge: Cambridge University

Press)
[10] Fueter R 1935 Die funktionentheorie der differentialgleichung �u = 0und ��u = 0mit vier reellen Variablen

Commun. Math. Helv. 7 307–30
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